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"ITER TO THE EDITOR 
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central force networks 
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Theory and Compumtional Science Group, AFRC Institute of Food Research, Nonvich 
Laboratory, Nomich Restarch Park, Colney, Norwich NR4 IUA, UK 

Received 16 December 1991 

AbslracL Random central force network are constructed by relaxation of a bond- 
depleted laltice of Hooke's law springs under tension. The bond depletion procedure 
involves the random removal of the bonds connecting the nodes of a simple cubic latlice 
subject to constrain& on (he coordination of individual nodes. In one model, the random 
network, random bond depletion is only restricted by the requirement that no node have 
mordination grealer than fourfold. In a second model. the continuous random network, 
random bond depletion i s  subject to the additional Constrain1 that he individual node 
coordination remains at least twofold, thus precluding the formation of any dangling 
bonds. The elastic properties of the two lypes of network markedly differ only for small 
values of the mean node coordination, when the random nelwork contains significantly 
higher fractions of threefold- and fourfold-coordinated "odes than the continuous random 
network. 

The elastic properties of random networks of Hooke's law springs under a tension 
have been investigated by B n g  and Thorpe [1,2]. However, the networks generated 
by the random bond depletion of lattices may not represent appropriate structural 
models of some physical systems, since the process of random bond depletion does 
not place any constraint on the coordination of individual nodes in the network. 
Such constraints are found in a continuous random network model of a glass. He 
and Thorpe [3] generated such a network from the random bond depletion of a 
diamond lattice subject to the constraint that all nodes should be two, three or 
fourfold coordinated. Another system in which physical constraints might be expected 
to resbict the node coordination within a network model is a gel. Grimson [4] 
introduced a random central force network model of a gel in which an initial phase 
of random bond depletion proceeds as long as the bond designated for remoml 
connects nodes at least one of which has coordination greater than fourfold. Any 
subsequent random bond removal is unrestricted. This model differs from that of 
He and Thorpe in that it allows for dangling bonds and disconnected nodes. In this 
letter the two models are compared as a function of the mean node coordination of 
the network. 

An elastic network is constructed from a lattice where all the bonds between 
nearest-neighbour sites are Hooke's law springs. The sites of the initial lattice define 
the nodes of the elastic network. The Hooke's law spring connecting nodes i and j ,  
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located at R, and R, respectively, is characterized by a natural (unstretched) length 
Lo and force constant IC. The elastic potential energy for this model is given by [4] 

i < j  

where the prime denotes that the summation is only over nearest-neighbour bonds. 
ICij = h' if the bond is present and K i j  = 0 if it is absent. The force F, on the ith 
node of the network is given by 

F; = -BE/BR, = E'Kij( lRi  - R,l- L,)Rij  (2) 
j 

where 

Rij = ( R ;  -Ri ) / lRi -Rj l  (3) 

is the unit vector between nodes i and j .  The equilibrium condition for the network 
is that the total force acting on each node of the network must vanish, Le. 

Fi = -BE/BR, = 0 (4) 

for all i. For an undepleted network the sites of the lattice will correspond to 
equilibrium positions of the network nodes. However, following site or bond depletion 
of the lattice, if the natural length of the springs differs from the lattice spacing the 
force balance is destroyed and the  network must deform so as to move the nodes of 
the network to their equilibrium positions. The equilibrium positions of the network 
nodes may be far away from the corresponding original lattice sites and a certain 
amount of static energy is stored in this relaxed network. The elastic properties of 
the network must be determined from the equilibrium structure. The networks are 
Characterized by a mean node coordination T defined by 

i :,J 

where Nn is the number of nodes in the simulation cell and yi is the coordination of 
the ith node. 

A bond-depleted lattice is first generated by randomly removing bonds from a 
simple cubic lattice subject to the constraint that the randomly selected bond is only 
removed if at least one of the nodes at either end of the bond has more than fourfold 
coordination. Bond depletion proceeds until ri 6 4 for all i. From [4] it is known 
that a value for the mean node coordination of ( T )  LX 3.5 is obtained from this 
procedure. Further unrestricted random bond removal then occurs to achieve the 
required mean node coordination. This type of network is termed a random network 
and does not preclude the presence of dangling bonds or disconnected nodes. These 
features are not allowed in a continuous random network which is achieved by the 
same bond-depletion procedure described above with the additional constraint that 
the randomly selected bond is only removed if following removal the coordination of 
all nodes remains at least twofold. 
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The bond-depleted network is relaxed to equilibrium by solving purely dissipative 
equations of motion for the nodes given by [5] 

q d R i / d t  = -BE/BR,  (6) 

for all i, where q is a friction coefficient. The coupled equations of motion for 
the nodes of equations (2) and (6) are solved numerically using the Euler method. 
Specifically, during the iteration procedure, the position of node i is determined from 
the previous configuration by 

where the parameter a = At/?) (or the time step At) is adjusted to ensure the 
convergence of the iteration. In this work 01 was typically chosen to be in the range 
0.1 < a < 0.3. The iteration process should stop when the force on every node of 
the network is zero. However, in practice, an appropriate small value for the force 
on any node, IF.1, is chosen that is good enough to give the final precision required. 
Thus the relaxation procedure is terminated when IFi[ < IF,I for all i. The elastic 
energy of the relaxed network is denoted by E0({Ki j} ,  Lo). 

n n g  and Thorpe [1,2] have shown that for depleted networks of stretched springs, 
the elastic properties, within linear elasticity theory, are fully determined by the four 
independent quantities E,, T, B and b. T is the tension, B the bulk modulus and b 
the shear modulus. The network tension may be determined by constructing an imag- 
inary plane through the sample and calculating the force per unit area perpendicular 
to the plane produced by the bonds that cut the plane. This allows the tension to be 
calculated from the equilibrium structure as well as from the numerical derivative of 
the deformation energy used to calculate B and 6 [2,4]. 

Periodic boundary conditions were employed to maintain the network tension 
[1,2] and the nearest-neighbour lattice spacing defines the unit of length. The force 
constant of the springs sets the energy scale and a maximum force on any node 
of IF,I/K = was used to terminate the relaxation procedure. This typically 
corresponded to an accuracy in the elastic energy per unit volume E,/h' for the 
equilibrium network of order IO-'. Such a choice leads to errors in the calculated 
elastic properties of networks that are less than the statistical uncertainty. The results 
presented here were obtained by bond depletion of 12 x 12 x 12 simple cubic lattices 
with periodic boundary conditions averaged over ten independent runs with random 
initial configurations. This gives statistical errors of less than 1% in the mean elastic 
energy and tension of the networks. Note that as a result of starting from a simple 
cubic lattice of size 12 x 12 x 12 it is difficult to achieve values of (r) < 2.15. 

All four independent elastic quantities show the same qualitative behaviour for 
both random and continuous random networks. For all values of the natural spring 
length, the elastic properties of the networks are monotonic decreasing functions of 
the mean node coordination. The mean values for the energy (E,) and tension (7') 
as a function of ( r )  in relaxed random and continuous random network are shown 
in figures 1 and 2 for La = 0 and La = 0.5 respectively. 

When Lo = 0 it can be seen that with the continuous random network (E,) and 
(T) are linear functions of (r) over the range 2.15 < (r) < 3.5 which by extrapolation 
would vanish for (r)  =I 2.05. The corresponding results for the random network show 
little qualitative difference when (F) > 3. But for (7) < 3, (E,) and (T) for the 
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Figure 1. Elastic energy per unit volume (Eo/K)  (m) and tension (T/A') (0) as a 
function of the mean node coordination (r) [or continuous random networks (26 ri < 
4 for all i) with Lo = 0. Results for random networks (rs < 4 for all i) are shown by 
the companding open symbols. 

random network both show significant curvature as a function of (r). This results 
in significant quantitative differences between the random and continuous random 
networks for small values of the mean node coordination. An extrapolated value 
for the mean node coordination corresponding to vanishing elastic properties of the 
random network would be much less than two, a value considerably smaller than tbat 
for the continuous random network. 

For Lo = 0.5 figure 2 shows that for the continuous random network (Eo) and 
(T) are now only linear functions of (7) for (r) > 3 and vanish for (r) < 2.2. Once 
more, significant quantitative differences in the elastic properties between the random 
and continuous random networb only occur for (r) < 3. The extrapolated value of 
(r)  at which the elastic propenies of the random network would vanish must clearly 
lie below two, but should be greater than when Lo = 0. Thus while the natural spring 
length plays an important role in determining the absolute magnitude of the elastic 
properties, the differences between random and continuous random networks do not 
appear to depend significantly on Lo and must result from the structural differences 
between the two network types. 

Figure 3 shows the node coordination distributions as a function of the mean node 
coordination resulting from the two random bond-depletion procedures. For ( r )  Y 3.5 
the fraction of twofold-, threefold- and fourfold-coordinated nodes in the two types 
of network are almost the same, with small differences arising from the presence of a 
few singly coordinated and disconnected nodes (not shown) in the random network. 
As the mean node coordination is reduced, the two types of network show monotonic 
decreases in the fraction of fourfold-coordinated nodes, monotonic increases in the 
fraction of twofold-coordinated nodes and a maximum in the fraction of threefold- 
coordiated nodes for (?-) Y 3. The most visually striking difference between the two 
network types is in the fractions of twofold-coordinated nodes, but this is simply a 
result of precluding dangling bonds from the continuous random network. The most 
important difference in the node coordination distribution between the two types of 
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Fiiore 2. Elastic energy per unit volume ( E o l K )  (n) and tension ( T J K )  (0) as a 
function of lhe mean node coordination (r) for continuous random netwxks (Zf r, < 
4 for all i) with Lo = 0.5. Results for random networks (r, f 4 for all i) are shown 
by the corresponding open symbols. 

20 22 2.4 26 28 30 32 3.4 

<r> 
Figure 3. Node coordination distributions as a function of the mean node coordination 
(r). For continuous random nelworb (2 < ri < 4 for a11 i) the node fraclions are 
shown for coordinations of r, = 4 (M), vi = 3 (0 )  and r, = 2 (W), while for random 
networks (ri f 4 for all i) the node fractions are shown by the corresponding open 
symbols. 

network is the presence of significantly higher fractions of threefold- and fourfold- 
coordinated nodes in the random network for ( r )  < 2.8. 

Thus is can be concluded that the elastic properties of bond-depleted networks of 
springs at small values of the mean node coordination can show substantial differences 
as a result of controlling the node coordination distribution, in this case by allowing or 
not the formation of dangling bonds. Significant quantitative differences between the 
elastic properties of random and continuous random networks occur when the fraction 
of threefold-coordinated nodes differ markedly and it is the presence of significantly 
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higher fractions of threefold- and fourfold-coordinated nodes in the random network 
that give it a much stronger structure than the continuous random network at small 
values of the mean node coordination. 
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